ANALYSIS OF LEARNING EFFECTIVENESS USING THE DEEP LEARNING APPROACH IN ELEMENTARY SCHOOLS

Authors

  • A. Gafar Hidayat STKIP Taman Siswa Bima
  • Tati Haryati STKIP Taman Siswa Bima

DOI:

https://doi.org/10.56997/kurikula.v9i2.2083

Keywords:

Effectiveness, Learning, Deep learning, Elementary school

Abstract

The purpose of this study is to describe the effectiveness, readiness and suitability of the learning approach framework using the deep learning approach in elementary schools, especially the readiness of resources, both teachers and supporting facilities for learning activities in elementary schools in Bima. The method used in this study is library research, by systematically reviewing literature to collect, evaluate, and synthesize information from various sources relevant to the research topic. The study result indicate that the deep learning approach in learning consists of 3 main pillars, namely understanding the differentiation of student learning, inviting students to think critically in solving problems, and learning with fun, so that students can easily remember what has been learned. The application of deep learning in elementary schools emphasizes contextual learning that can be applied to learning science, mathematics, Indonesian, PPKn, PAI, and other non-curricular learning. It's just that this approach can be. Applied chose the synonim if the teacher is able to contextualize the latest issues, with the subject matter delivered. For teachers who have participated in the school mover program or teacher practice/movers, they can easily apply and combine deep learning as a learning approach, but in one elementary school not all teachers follow the program. This means that there needs to be mentoring or training from driving teachers or GMP group groups and the like, for all elementary school teachers, and this does not rule out the possibility of being implemented well, as a deep, detailed and enjoyable learning approach.

References

Bengio, Y., Goodfellow, I., & Courville, A. (2017). Deep learning (Vol. 1). MIT press Cambridge, MA, USA.

Faisal, M. A. A., Mecheter, I., Qiblawey, Y., Fernandez, J. H., Chowdhury, M. E. H., & Kiranyaz, S. (2025). Deep Learning in Automated Power Line Inspection: A Review. ArXiv Preprint ArXiv:2502.07826.

Festiawan, R. (2020). Belajar dan pendekatan pembelajaran. Universitas Jenderal Soedirman, 11.

Fitriani, M. D. (2025). Akankah “Deep Learning” Menggantikan Kurikulum Merdeka. https://doi.org/https://bpmpbengkulu.kemdikbud.go.id/akankah-deep-learning-menggantikan-kurikulum-merdeka/

Friani, I. F., Sulaiman, & Mislinawati. (2017). Kendala Guru dalam Menerapkan Model Pembelajaran pada Pembelajaran Tematik berdasarkan Kurikulum 2013 di SD Negeri 2 Kota Banda Aceh. Jurnal Ilmiah Pendidikan Guru Sekolah Dasar FKIP Unsyiah, 2(1), 88–97. Retrieved from https://media.neliti.com/media/publications/188143-ID-kendala-guru-dalammenerapkan-model-pembe.pdf

Jiang, B., Li, J., Lu, Y., Cai, Q., Song, H., & Lu, G. (2025). Eficient image denoising using deep learning: A brief survey. Information Fusion, 103013.

Kemendikbud. (2025). Mendikdasmen Paparkan Implementasi Deep Learning Sebagai Upaya Peningkatan Mutu Pendidikan. https://doi.org/https://www.kemdikbud.go.id/main/blog/2025/02/mendikdasmen-paparkan-implementasi-deep-learning-sebagai-upaya-peningkatan-mutu-pendidikan

Kwong, J. Y. Y., & Wong, K. F. E. (2025). The development of escalation bias across the life span: A multi-level adaptive learning approach. Cognitive Development, 74, 101554.

Liang, S., Chen, G., Ma, C., Zhu, C., Li, L., Gao, H., & Yang, T. (2025). Quantitative determination of acid value in palm oil during thermal oxidation using Raman spectroscopy combined with deep learning models. Food Chemistry, 143107.

Miza Nina Adlini, dkk. (2022). Metode Penelitian Kualitatif Studi Pustaka dan Studi Lapangan. Pre-Print Digital Library UIN Sunan Gunung Djati Bandung.

Nehzati, M. (2025). Optimization of deep learning algorithms for large digital data processing using evolutionary neural networks. Memories-Materials, Devices, Circuits and Systems, 100126.

Nguyen, Q., & Kieu, C. (2024). Predicting Tropical Cyclone Formation with Deep Learning. Weather and Forecasting. https://doi.org/10.1175/WAF-D-23-0103.1

Pahrul, Y., Joni, J., & Marlina, L. (2021). Kemampuan Guru dalam Mengelola Kelas selama Pembelajaran Covid-19 pada Anak Usia Dini. Jurnal Obsesi : Jurnal Pendidikan Anak Usia Dini. https://doi.org/10.31004/obsesi.v6i3.1807

Rohita, R., Anisa, N., & Fitriah, S. N. (2022). Penerapan Model Pembelajaran Area untuk Mendukung Kemampuan Kognitif Anak dalam Pembelajaran Daring. Jurnal Obsesi : Jurnal Pendidikan Anak Usia Dini. https://doi.org/10.31004/obsesi.v6i5.1753

Sitompul, B. (2022). Kompetensi Guru dalam Pembelajaran di Era Digital. Jurnal Pendidikan Tambusai. https://doi.org/10.31004/jptam.v6i3.4823

Zheng, J., Zhou, H., Liu, X., Yang, Z., & Ge, Z. (2025). Local deep learning of principal component regression model for spectroscopic calibration of time-varying spectra data. Measurement, 116855

Downloads

Abstract View: 1300,

Published

2025-04-28